BOARD OF EDUCATION
OF
PRINCE GEORGE’S COUNTY, MARYLAND

R. Owen Johnson, Jr., Chair
Verjeana M. Jacobs, Esq., Vice Chair
Rosalind A. Johnson
Linda Thornton Thomas
Donna Hathaway Beck
Pat J. Fletcher
Heather Iliff
Ron L. Watson, Ph. D.
Haywood Perry, III, Student Board Member
John E. Deasy, Ph. D., Superintendent
William R. Hite, Jr., Ph. D., Deputy Superintendent

Gladys Whitehead, Ph.D., Interim Chief Academic Officer
Kara Miley-Libby, Ed.D., Director of Curriculum and Instruction, Acting
Gwendolyn F. Smith, Ph.D., Coordinating Supervisor, Comprehensive Instructional Support
Anita Lambert, Director of Academic Support, Acting
Zipporah Miller, Science Supervisor
Acknowledgements

Prince George’s County Public Schools wishes to thank Virginia Casbourne who worked on the organization and development of this document. Several pages from the Prince George’s County Public Schools Parent Involvement Guide have been incorporated into this Science Fair Project Journal.
Table of Contents

Steps to the Scientific Method and Timeline ... 2
Topic Guideline .. 3
Question ...4-5
Hypothesis/Prediction ... 6
Variables ...7-8
Materials .. 9
Procedures ..10-12
Data Collection Information ... 13
Design a Chart... 14
Journal Entry Pages ...15-16
Experiment Time Frame .. 17
Graphs ..18-19
Graph Paper ...20-21
Written Explanation... 22
Conclusion Questions..23-24
Conclusion ... 25
Research ... 26
Research Notes ..27-29
Bibliography Notes.. 30
Appendix.. 31
 Topic Brainstorming Pages...32-34
 Writing a Bibliography .. 35
 Sample Research Paper 1...36-42
 Sample Research Paper 2...43-50
Science Fair Display Checklist.. 51
Tips for Creating Outstanding Displays ... 52
Science Fair Display Diagram ... 53
Oral Report Rubric... 54
Score Sheet for Science Fair Project.. 55
Steps to the Scientific Method

1. Research*
2. Topic Selection
3. Question/Purpose/Problem
4. Prediction/Hypothesis
5. Experiment
 - Variables
 - Procedures
 - Materials
6. Data Collection/Results
7. Conclusion

*Research is an ongoing process. It occurs at the beginning to get ideas for a topic. Then research continues to develop and support the topic. A research paper with a bibliography is mandatory for fourth, fifth and sixth graders.

Timeline for Science Fair Project

Date Due _______________ Question
Date Due _______________ Prediction
Date Due _______________ Variables
Date Due _______________ Materials
Date Due _______________ Procedures
Date Due _______________ Data Collection Tool
Date Due _______________ Results
Date Due _______________ Conclusion
Date Due _______________ Research paper
Date Due _______________ Science Fair Display Checklist
Date Due _______________ Display board is due at school

BE A WINNER
✓ Meet your due dates so you can finish on time!
✓ If you complete something early, start on the next

This year the Science Fair will be held on ____________
1. Only third graders will be allowed to submit consumer projects. Consumer projects include any kind of product testing such as the strength of paper towels, the best battery, etc...

2. No vertebrate projects will be allowed. A vertebrate is an animal that contains a backbone. PEOPLE are VERTEBRATES. Therefore, no projects involving people will be accepted. This includes memory tests and gender surveys. Other vertebrates include fish, birds, reptiles, amphibians, and all other mammals.

3. Invertebrates are acceptable such as worms, insects and mollusks where no injury to the animal is involved.

4. NO MODELS will be accepted such as solar systems or volcanoes.

5. Projects that involve the growth of bacteria or mold; the use of fire; or potentially dangerous materials will require additional supervision and safety protocols to be signed prior to approval of the project. Any project that falls into this area MUST have the approval of the Science Coordinator to ensure county policy and safety protocols are followed.

SELECTING A TOPIC

A good topic can be found in two basic ways. First, you can research topics using the library and Internet. There are many good books available at the school and public libraries, as well as websites found on the web. Second, you can brainstorm a topic by asking yourself the following questions:

1. **What do I already know about the topic?**
 - Example: Vitamin C
 - Vitamin C is good for you
 - Some people take Vitamin C when they are sick.
 - You can buy Vitamin C in a tablet.
 - Orange juice has Vitamin C.
 - There are other vitamins besides Vitamin C.

2. **What do I need to know to better understand the topic?**
 - What is a vitamin?
 - What is Vitamin C?
 - How do I test for Vitamin C?

3. **What possible questions could I explore about the topic?**
 - Which fruit juice has the most Vitamin C?
 - Does fruit juice from concentrate have more/less Vitamin C?
 - Do any vegetables have Vitamin C?
 - Does freezing change the amount of Vitamin C?
 - Do all citrus fruits have the same amount of Vitamin C?
The **Question** is also referred to as the **PROBLEM** or the **PURPOSE**. A good question is the key to a good science fair project. Scientists ask questions and then conduct experiments to find out the answer. Therefore, the question asked, should only be able to be answered by performing an experiment, not by looking in a book.

Be specific when writing a question. For example:

Instead of asking –– How do bean plants grow?

Ask:
1. Does the amount of water effect how tall a bean plant will grow?
2. Does soaking a bean seed before planting affect how fast it will grow?
3. Do bean plants grow better in an acid soil or an alkaline soil?

Use the space below to write a rough draft of your question.

__
__
__
__
__
__
__
__
__
__

Question is not approved. Make revisions on a separate sheet of paper and attach it to the book.
Question is approved. You are ready to write your hypothesis/prediction.

Teacher Signature ___________________________ Date ______________
Parent Signature ___________________________ Date ______________
Revising your Question: Try to state your question more clearly. Be sure the question can be answered by collecting data in an experiment.

__
__
__
__
__
__
__
__
__
__
__
__
__

Question is not approved. Make revisions on a separate sheet of paper and attach it to the book.
Question is approved. You are ready to write your hypothesis/prediction.

Teacher Signature ______________________ Date ______________
Parent Signature ______________________ Date ______________

Write approved question in pen here:
__
__
__
__
__
__
__
__
The **HYPOTHESIS** is another name for a **PREDICTION**. When you are writing the hypothesis you are trying to predict the answer to your question. You should always give a reason for your prediction either from your own experiences or from research you have done.

For example:

Question: Does soaking the bean seed before planting it affect how fast it will grow?

Possible Predictions:

I think that bean plants that have their seeds soaked before planting will grow faster **because** it will make the hard seed covering soft.

I do not think that soaking the beans will make the bean plant grow faster **because** soaking the seed will just make the seed mushy.

Rewrite the approved question in pen:

Hypothesis/Prediction:

Approved on _________________________
Teacher ______________________________
Parent Signature ______________________
VARIABLES

Take time to identify your variables before you start your experiment. It will help you to write your procedures. Variable is something that can change or be changed. There are three kinds of variables called, independent, dependent and controlled variables.

In a well-designed investigation there should be only one thing changed on purpose, called the independent or manipulated variable.

Remember the example question: Does soaking the bean seed before planting effect how fast it will grow?

In this example the thing I am changing on purpose is soaking the seed before planting it. Therefore, soaking the seed before planting it is the independent variable (manipulated variable).

What I think or hope will change during the experiment is called the dependent variable or responding variable.

In this example the thing I am hoping or thinking will change during the experiment is how fast the plant grows. Therefore, how fast the plant grows is the dependent variable (responding variable).

I must try to keep any other things that might be changed the same throughout the experiment. These things that I keep the same are called the controlled variables.

In this example the things I would keep the same are:

- Type of bean
- Amount of water I soaked it in
- Type of soil I plant the beans in
- Amount of soil I plant the beans in
- Amount of water and sunlight they get everyday
- Size containers I plant the beans in

These are the variables I am controlling.
Identifying Variables

Independent Variable - what I have changed on purpose:
__
__
__
__

Dependent Variable – What I think/hope will change during my investigation:
__
__
__
__
__
__
__
__

Controlled Variables – what I have kept the same:
__
__
__
__
__
__
__
__

Approved on ___________________________
Teacher ___________________________
Parent Signature ________________________
Your **MATERIALS** is a list of all of the items you will need in order to conduct your experiment. As you develop your procedure, you may need to add to your materials list.

Remember to:
- Be specific
- Give amounts and sizes
- *Use METRIC* measurements

Materials:

Date ________________

Approved on ____________________________
Teacher ________________________________
Parent Signature _________________________
PROCEDURES are a detailed step-by-step set of directions of how to conduct the experiment. Details are very important here. Be sure to tell exact amounts of things such as materials, time it will take, etc. It is important that anyone be able to follow your steps and repeat your experiment exactly as you did it. You MUST have at least 3 repeated trials and clearly identify what you are keeping the same and what you are changing (variables) to ensure a well-designed investigation.

Procedures:
Use this space to make any drawings needed to help understand the procedures. Remember to label all parts and provide a title.
Before you start conducting your experiment, it is important that you have thought out your data collection.

- To begin, you should design a chart, table, or journal entry system to record your information. Whenever possible, you must collect NUMERICAL DATA in a chart or table because you are expected to provide both a graph and written results for your project. Your teacher will help you if your experiment requires data that is not in numbers.

- Your chart or table should have room for repeated trials (no less than three - the more trials you complete, the more reliable your data and conclusion) and a place to find the average (mean) of your data.

- The data should be collected using metric units whenever possible because metric is the international system of measurement for scientists. Metric units include centimeters, meters (linear), grams (weight/mass), and liters (liquid volume). Again, consult your teacher if you are not sure which measurement to use.

- Use a ruler to draw straight lines when designing your chart or table. Neatness will help you to keep accurate data.

- Label the different rows and columns of your chart or table. Also include a title.

Remember you will need accurate data to create a graph, report your results, and draw a conclusion.

Checked on ______________________
Teacher _______________________
Parent Signature ___________________
Use this space to design a chart or table to collect your data.
Use this page for journal entries made while conducting the experiment. Notes may be brief but should be very descriptive. Always include the date for each entry.

Checked on _______________________
Teacher _________________________
Parent Signature ____________________

These pages are for students who are not able to collect numerical data due to the nature of their project or for students who wish to include descriptive data along with their charts or tables.
Use this page for journal entries made while conducting the experiment. Notes may be brief but should be very descriptive. Always include the date for each entry.

These pages are for students who are not able to collect numerical data due to the nature of their project or for students who wish to include descriptive data along with their charts or tables.

Checked on _______________________
Teacher____________________________
Parent Signature____________________

Science Fair Project Journal – Elementary Science
Prince George’s County Public Schools
You are now ready to conduct your Experiment

To conduct the experiment you will need to:
- follow the procedures just as you wrote them;
- keep accurate records by filling in your data chart and making journal entries as you go;
- have all the materials gathered together before you begin.

I will need __________________ to conduct my experiment. (Time Frame)
All **RESULTS** should include three parts. First, it should include a data chart. An appropriate graph (line, pie or bar) of the data collected in the chart should also be included. Finally, a written explanation of the chart information and the graph is included.

Graphs

When choosing a graph, be sure to use the most appropriate one.

Line graphs should be used to display continuous data. Experiments that have dependent variables that involve temperature, time, mass, height or distance will *usually* result in data that can be graphed on a line graph. On a line graph, the horizontal (x) axis is always the independent variable and the vertical (y) axis is always the dependent variable. It should also have:
- Numbers (scale) in even intervals (1’s, 2’s, 5’s, 10’s, 100’s, etc.)
- Labels for the horizontal and vertical axes.
- A title that reflects the information that is being graphed.

Bar Graphs should be used to display data that separate or that are distinct from other pieces of data. The data in a bar graph can be displayed either vertically or horizontally. A bar graph should include:
- Numbers (scale) in even intervals (1’s, 2’s, 5’s, 10’s, 100’s, etc.)
- Labels for the horizontal and vertical axes.
- A title that reflects the information that is being graphed.

Remember to find the AVERAGE or MEAN of your **DATA** before graphing.

Pie Graphs should be used only when the results are best shown as a percentage of a whole. The data of a pie graph should include:
- A circle that is divided into the necessary number of parts.
- Sections (or slices) of the pie should be sized accurately according to the data.
- Each section of the pie should be labeled or color coded with a key.
- A title that reflects the information being graphed.

Be extra careful when using a computer to create your graphs. The computer will create any graph you want, whether it is the correct graph or not. Also, many computer graphs leave off important titles and labels.
A Written Explanation is also required and should be at least a paragraph long. The purpose of the written explanation is to help explain the data displayed in the chart and graph. RESULTS may also include photographs and diagrams that help to display and understand the data.
A written explanation gives a brief explanation of the data on the chart and graph. It can include any trends that may occur in the data. This is not the conclusion. It is simply a summary of what the data shows.

Date _______________________

Checked on ____________________

Teacher ______________________

Parent Signature ________________
The CONCLUSION tells what you learned about the topic by completing the experiment. It contains many parts. Answer each of the questions below. Then join them together in paragraph form to write your conclusion.

Was my hypothesis/prediction correct or incorrect? ________________________

What is the answer to my question? Support the answer with data collected.

Were there any problems with the investigation or things I would do differently?
Date____________________

What other things would I like to investigate about my topic? _________

__
__
__
__
__
__
__
__

How does what I learned apply to the real world? ________________

__
__
__
__
__
__
__

Checked on ______________________
Teacher________________________
Parent Signature________________
Now, rewrite your answers together to form a complete conclusion.
Research is important to a good science fair project. It helps you to choose a topic and then learn more about the topic.

A research report is mandatory for anyone in grades four, five and six. The research report is not complicated and need only include the following five things:

1. **Title Page**: The title page includes the title of your project, your name, school, grade, teacher and the date the project is being turned in.

2. **Acknowledgements**: A personal thank you to anyone who helped you with the project (teacher, parent, sibling, scientist, librarian etc.)

3. **Question**: The specific question you asked for your experiment

4. **Background Research**
 1. If you generated a list of things you wanted to know about your topic in the brainstorming section, in the appendix of the journal, the ideas there are a good place to start your research. (If you haven’t already done so, take some time to write down questions that could be found through research about your topic.)
 2. Use the books in the library and the Internet to find out interesting and relevant information about your topic.
 3. Rewrite the information you find in your own words. Do not just copy from the book or print out pages from the Internet. This is considered PLAGARISM and it is illegal. If you are having difficulty putting ideas in your own words, try saying aloud a small section that you have just read without looking, chances are you will put it in your own words or ask an adult to help you.
 4. Keep track of what books or websites you used to get your information so you can list your sources in a bibliography.

5. **Sources/Bibliography**: An alphabetical listing of books, articles or other sources including websites that you used when researching your topic. Look in the appendix for specific rules for writing a bibliography.

The more I understand about my topic, the better understanding I will have of my results.
This appendix is designed to provide additional information to help the student with the science fair project. Included in this appendix, are additional items that may be helpful in finding a topic, writing a research paper or creating the display. There is information about how the science fair project will be judged, along with scoring sheets for the teachers.

Also, included in this appendix are sample research papers written by William Beanes students. These samples are meant to help illustrate the 5 parts to be included in the research paper. Notes, inside of balloons, are added to the papers to highlight special parts of the paper. These notes and highlighted areas should not be duplicated into your own papers. The contributions of Schntae Graham (4th grade) and Venetta Bronson (6th grade) are greatly appreciated. They generously donated their research papers to be used in this journal.
Topic Brainstorming

My Topic: __

What do I already know? __

__
__
__
__
__
__
__
__
__
__
__
__
__
Date

My Topic: ____________________________

What do I need to know? ____________________________

__

__

__

__

__

__

__

__

__

__

__

__
My Topic: ____________________________

What possible questions could I explore about the topic? ____________

__
__
__
__
__
__
__
Writing a Bibliography

When you write a bibliography, you are listing all of the sources of information you used to write your paper in alphabetical order. For the different types of sources follow the examples listed below.

BOOKS
Author (last name, fist name). Title of the book. City where book is published: Publisher, Copyright date.

MAGAZINES
Author (last name, fist name). “Title of the article.” Title of Magazine Date (day month year): page numbers of article.

Smith, Sarah J. “Why Don’t We Fall from Rollercoasters?” Science News 8 July 2000: 77-79.

ENCYCLOPEDIA

FILMS, SLIDES, or VIDEO TAPES
Title. Medium (state if it is a film, slide, video tape, laser disc etc). Production company, date. Time length

INTERVIEWS
Person you interviewed (last name, first name). Type of interview. Date.

ON LINE SOURCES (Websites)
Author (last name, first name – if there is one) “Title of Article”. Title of Website or Publication. Date of Publication (or last update). On-line. Date of access (when you went to website). Available website address.

Sample
Research Paper 1
TRUTH DECAY

THE TRUTH ABOUT

TOOTH DECAY

Student Name

Schnntae Graham

School

William Beanes Elementary School

Teacher Name

Teacher: Ms. Ward

Grade level

Fourth (4th) Grade

Date due

February 19, 2002

This is the title page. It is the first requirement of the research paper.
I would like to thank my Mom for helping me with this project and typing the information, because it was taking me forever. Special thanks to Ms. Ward and Ms. Casbourne for encouraging me to do the project. I wanted to change projects because things weren’t working the way I thought.
QUESTION

To find out, if you let an egg sit in lemonade, Coca-Cola, Diet Coke, orange juice or water for seven days, what effect will it have on the egg?

RESEARCH

This research paper and science project taught me a lot about why my Mom always asks, “Did you brush your teeth?” I hear it every day. I see that it is important to brush your teeth, eat well and visit the dentist. That’s why this project is titled, TRUTH DECAY. This paper will give you a better understanding about why our teeth are important, how tooth decay begins, and how to prevent tooth decay.

Tooth decay can start at any age. While we are young, we should take good care of our teeth. I do not like to go to the dentist but my mom makes me go at least two (2) times a year. My mom says it is important to go to the dentist, so when you get older you won’t have a lot of problems with your teeth and spend a lot of money.

What Are Teeth Made Of?

The white covering on teeth is called enamel. The function of the enamel is to protect the tooth from damage and pain. Under the outer covering of enamel is a hard, yellow substance called dentin. Most of the tooth is made up of dentin.
What Is Tooth Decay?

Tooth decay is a bacterial disease of the teeth. This decay is the primary source of tooth loss in people no matter what their age is of a person.

Why Do You Get Tooth Decay?

Tooth decay happens when bacteria, sugary foods, and a target tooth surface work together or react against each other. Our mouths contain lots of bacteria. We eat a lot of different foods at different times of the day; therefore, the bacteria convert some of the sugary foods to acid. The bacterium that grows on our teeth is called plaque. Plaque is the sticky coat that forms on the outside of our teeth. When you don’t clean or brush your teeth regularly, plaque will build. Bacteria eat through the outside of the teeth or what is called tooth enamel; this makes the tooth surface soft. Once the bacteria get through the enamel of a tooth, tooth decay can make a tiny cavity or little hole in the tooth. You can tell when you have a cavity because something cold (ice cream), hot (soup) or sugary (candy) may cause you to get a toothache or your teeth may feel tender. When this happens tell a parent so you can go to the dentist.

Why Was An Egg Used In The Experiment?

A hard-boiled egg was used because this is the closest model of your teeth. The damage to the egg during the experiment is in relation to the damage that can be done to your teeth.
How Do You Prevent Tooth Decay?

To prevent tooth decay, it is important to brush your teeth regularly. Brushing is not just to make sure that your teeth are clean, but to remove plaque that builds on your teeth and causes tooth decay. You should brush more than just once a day. Books and articles suggest that your brush after every meal. Use fluoride toothpaste. Fluoride helps protect your teeth from tooth decay. Visit the dentist at least twice a year. The dentist checks for problems. The dentist may prevent small problems from getting out of control. Tooth decay may take several months to happen, but modern technology, like an x-ray, will show small problems.

Our teeth must last a lifetime. One or two cavities may not seem like a big deal, but your teeth tell a lot about you. If you have rotten teeth, you may not smile a lot or it may cause you embarrassment. Now that you know what “TRUTH DECAY” is, let’s get busy and brush “TOOTH DECAY” away.
Listing website resources can be tricky because all the same information is not always available. Always give as much information about the website as you can.

This is the bibliography page and it is the fifth and final requirement of the research paper. Notice that the sources are listed in alphabetical order by author’s last name.

This student used three books and one website as resources for the research found in this paper.
Sample Research Paper 2
What is the Effect of Thermal Inversion on Air Pollution?

Venetta L. Bronson
William Beanes Elementary School
Grade 6
Mr. Fishkin
February 19, 2002
ACKNOWLEDGEMENTS

Thanks Mom for all of your help.

Thanks Ms. Casbourne for the Science Fair “make and take.”

Thanks Mr. Fishkin for helping me with my corrections.

Notice that the student was specific with the type of help given here.

This page acknowledges the help that the student received in doing the project. It is the second requirement of the research paper.
The Science Fair question is the third requirement of the research paper.

Question: What is the Effect of a Thermal Inversion on Air Pollution?

The student decided to place the Science Fair question on a separate page.
Air and water are essential to life. Air pollution is caused when chemical substances are released into the atmosphere that are not normally found there. Polluted air can cause or lead to lots of health problems in people. It can also harm plants and animals.

Smog, the dark haze in the air (smoke and fog) is the most common form of air pollution. It is a major problem for many cities in the world. Polluted air is dirty air. It can make the air smell bad and can make things dirty. It can rise up into the atmosphere and be carried away for many miles by the winds.

The atmosphere can be damaged by polluted air.

Many activities of human beings pollute the air. People pollute the air by allowing chemicals, poisonous gases, and tiny particles of dirt to get into the air.
My Science Project

My science project is about the effect of a thermal inversion on air pollution. A thermal inversion occurs when hot air is above colder air. Hot air rises and cold air falls. If the cold air is nearer to the ground, there will be no mixing of air. This still air has no wind to carry away the pollution particles.

A thermal inversion traps air near the ground. Pollution molecules build up in the air if there is no wind to carry them away from the city or rain to wash them out of the air. An example of how pollution and smog can be deadly is in Donora, a small town in Pennsylvania. In October 1948, 6,000 people in a town of 14,000 got sick, and 20 died from pollution and smog that was so thick people couldn’t see across the street.

Smog is a combination of smoke and fog. A lot of the pollution molecules you cannot see. However, sometimes you may see smoke combine with fog to produce smog. Estimates of deaths from pollution caused by still air, a build-up of smog, and pollution include 650 people in London in 1873, 400 people in New York City in 1963 and 4,000 people in London 1952 during five days of smog!

We cannot control the weather or prevent thermal inversions from occurring, but we can reduce the pollution that causes smog. We can drive more fuel-efficient cars. We can use devices to help stop pollution molecules from being released from cars, factories and power plants.
This process of warm air rising and cold air falling keeps the air moving and helps carry pollution away from its source. A thermal inversion occurs when hot air is above colder air. Hot air rises and cold air falls. If the cold air is nearer to the ground, there will be no mixing of air. This “still” air has no wind to carry away the pollution particles. A thermal inversion traps air near the ground.

My hypothesis proved incorrect. I predicted that the hot air smoke would not rise out of the bottle. Instead, it would be trapped near the ground (stay in the bottom of the bottle) and the cold air would rise. I also predicted that a thermal inversion would have no effect on the air pollution at all.

In doing my experiment, I observed that the cold air smoke stayed in the bottom of the bottle for a long time before it disappeared. At no time did it rise to the top. I was so sure that the hot air smoke would not rise; instead it would stay in the bottom of the bottle. However, it seemed like once I dropped the match into the bottle with the hot air smoke, I saw the smoke rise up to the top of the bottle and then it quickly disappeared. I did this experiment six times. Each time I got the same results. The only problem I remember was that sometimes the match would go out before I could get it to the bottle. I think this happened because I was scared of the fire. I was afraid I might get burned, but my mom said she wouldn’t let that happen.

I’d like to try this experiment with a watch instead of a timer. I could check the amount of smoke in the bottles every minute to see if there was smoke in them or not.
Bibliography

All of the resources used for this paper were books.

This is the bibliography page and it is the fifth and final requirement of the research paper. Notice that the sources are listed in alphabetical order by author’s last name.

There is no author name, so it is listed alphabetically by the title.

This is the source where the project idea came from.

Copyright date

Name of publishing company

Author’s name listed with last name first.

Book title is underlined.

City where book was published.

This is the source where the project idea came from.
Science Fair Display Checklist

After you have completed your backboard take time to complete this checklist yourself to be sure you have everything included on your display board. Then add or revise any areas that you did not check off as being complete. After you have made any changes to your board, have your parent complete the checklist as a final review of your work before turning it in at school.

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Self</th>
<th>Parent</th>
</tr>
</thead>
</table>

1. Overall appearance is neat and attractive.
 _______ _______

2. All necessary parts are included and labeled *(Question, Prediction, Materials, Procedure, Results, and Conclusion.)*
 _______ _______

3. I used no more than three colors when doing my backboard.
 _______ _______

4. My backboard has a short and catchy title.
 _______ _______

5. All of the words on my backboard are spelled correctly.
 _______ _______

6. I have used proper grammar and punctuation.
 _______ _______

7. My procedures are written in clear sequential order.
 _______ _______

8. My procedure shows that I conducted repeated trials *(at least 3)* and used an adequate sample size, if necessary.
 _______ _______

9. I have identified my independent, dependent and control variables
 _______ _______

10. All necessary parts are included on my chart *(title, labels, and units)* and it is neatly drawn and filled in with appropriate data.
 _______ _______

11. I have the correct type of graph that displays my data from my chart and the graph includes all the necessary parts *(title, axes, increments, labels, and scale)*. A key is present if necessary.
 _______ _______

12. I included a written explanation of my chart, graph and any other observations I made.
 _______ _______

13. My conclusion includes the answer to the original question, accuracy of my prediction, what I learned supported with data, any problems and real world applications.
 _______ _______

14. My research paper follows the guidelines listed in the journal.
 _______ _______
TIPS FOR CREATING OUTSTANDING DISPLAYS

- **BE NEAT**: Avoid frayed or ripped edges of paper, glue globs, lots of cross outs or white outs etc.

- **USE COLORS TO ATTRACT ATTENTION BUT DON’T OVER DO IT**: No more than (3) three colors should be used on a project except for special situations. Too much color can be distracting. Instead develop a color pattern that is pleasing to the eye.

- **FRAME OR MATTE YOUR WORK**: Use construction paper or other colored materials to provide a background for your written work and labels (construction paper, newspaper, wrapping paper, old wall paper, contact paper etc…)

- **TITLES SHOULD BE SHORT, CATCHY AND RELATED TO THE PROJECT IDEA**

 For example:
 - *Color of Cool Cubes* is better than *The Melting Rate of the Different Colors of Ice Cubes*
 - *Sizing Up Seeds* is better than *The Relationship between the Size of the Seed and the Size of the Plant*

- **WRITING SHOULD BE NEAT AND LEGIBLE**: If you choose to use a computer or typewriter, stick to one or two fonts to type your work. Too many fonts can be distracting and difficult to read. If you hand write your work, print or use cursive, don’t mix the two. Also, if you are handwriting the information, be extra careful to write so it can easily be read by others. Pen is easier to read than pencil. Messy or illegible writing can really lower your score.

- **SPELLING DOES COUNT**: Take time to check over your work before you put it on your display board. Don’t overuse white out. Scratching out mistakes is not acceptable. If you do recognize an error after finishing, place a single line through it and write the correct word above. However, too many of these types of marks will effect the overall appeal of your project.

- **PRACTICE YOUR LAYOUT**: Before you begin gluing things down, practice moving the parts of the display around until they are evenly spaced and centered. Crowding together or large gaps can take away from your project’s appeal. Trying to rip off or move things once they are glued down can be messy and often ruins the paper or display board.

- **DON’T GLUE ON MATERIALS FROM YOUR PROJECT**: Don’t glue on food items such as M & M’s, popcorn or moldy bread to the board. Food products attract bugs, so do their wrappers. Don’t place samples of chemicals or their containers on the board. This includes household items such as vinegar, dish soap, oil etc.

- **TAKE PHOTOS OR DRAW PICTURES/DIAGRAMS OF THE ITEMS FOR DISPLAY**: This will help you to avoid attaching materials from your experiment to your display. Inappropriate materials will be removed from the board before allowing it to be displayed in the fair.

- **RESEARCH REPORTS ARE PLACED IN FRONT OF THE DISPLAY**: Don’t attach the report to the display board. It is placed in front of the display.
Title: short, catchy, related to the topic and results of the experiment
Question: the question to be tested
Prediction: the predicted answer to the question/problem asked with a reason
Materials: a list of the supplies, equipment to be used
Procedure: a list of the steps followed to perform the experiment
Results: data displayed in table and graph form to include data analysis (mean, median, mode, range) and accompanied by a written explanation
Conclusion: briefly answers the question asked in the beginning; states the prediction to be supported or not supported, and makes suggestions for further research
Science Fair Project- Oral Report
Scoring Guide

Name__________________________________ Total Points _____ /25

Teacher Signature ______________________ Grade ______

Communication
- Eye Contact: 2-1-0
- Loudness of Voice: 2-1-0
- Preparation: 2-1-0

Content
- Title: 1-0
- Purpose: 1-0
- Hypothesis: 1-0
- Materials: 1-0
- Procedures: 1-0
- Results: 1-0
- Conclusion: 1-0

Questions
- Why did you choose your topic? 2-1-0
- How many times did you repeat your experiment? 2-1-0
- If you were to do this experiment again, what would you do differently? 2-1-0
- (4th-6th only) Tell one interesting fact or idea you learned when completing your research paper. 2-1-0

OR
- (3rd grade only) Tell one thing you learned by doing this experiment. 2-1-0

Overall Score

Excellent – 3 Satisfactory – 2 Fair – 1 Unsatisfactory - 0

Score Range Score Range Score Range Score Range
25-20 19-15 14-10 9-0
Score Sheet for Science Fair Project

Checked boxes indicate something is incomplete, inaccurate or missing.

Overall Appearance and Organization of Backboard 5 points _______
- All parts of project are included and clearly labeled
- All parts are in the correct sequential order
- Backboard is neat and attractive
- There are very few or no spelling errors
- Good grammar was used throughout the writing
- Any photographs used have captions
- Any drawings included have labels and titles

Question 5 points _______
- Question led to an investigation, not a report, demonstration or model
- Question is clearly written in the form of a question
- A creative approach to problem-solving was used to formulate the question

Prediction 5 points _______
- Prediction must state a possible outcome of the experiment
- Prediction must include an explanation or reason for the prediction
- Background information is present showing research was done

Materials 5 points _______
- All materials used in the experiment are listed
- All materials list the quantity needed
- All measurements are done in metric

Procedures 5 points _______
- All steps for the procedure are accurately stated and in sequential order
- Procedures indicate that repeated trials (at least 3) were conducted
- The independent, dependent and control variables are accurately identified

Results- Graphic representation 5 points _______
- Data is present in the form of a table or chart
- An appropriate type of graph is accurately constructed
- If a graph is not possible- journal entries or other visual display of results is present

Results- Written Explanation 5 points _______
- Explanation analyzes and summarizes the data to note patterns and trends
- Explanation interprets the graph

Conclusion 5 points _______
- Conclusion answers original question asked
- A statement reflecting whether or not the prediction was supported is included
- Supporting data is used
- Any problems with the experiment, changes for the future or addition research questions are mentioned as life application connections are made

Teacher Signature ____________________________ Total Score ________________
Grade ____________________