Summer Enrichment Packet for Rising Algebra 1 Students

ANSWER KEY

PRINCE GEORGE’S COUNTY PUBLIC SCHOOLS
Division of Academics
Department of Curriculum and Instruction
BOARD OF EDUCATION
OF
PRINCE GEORGE’S COUNTY, MARYLAND

Alvin Thornton, Ph.D., Chair
Edward Burroughs III, Vice-Chair, District 8
David Murray, District 1
Joshua M. Thomas, District 2
Pamela Boozer-Strother, District 3
Bryan Swann, District 4
Raaheela Ahmed, District 5
Belinda Queen, District 6
K. Alexander Wallace, District 7
Sonya Williams, District 9
Curtis Valentine, M.P.P., Board Member
Paul Monteiro, Board Member
Sandra D. Shephard, Board Member
Joshua Omolola, Student Board Member

Monica E. Goldson, Ed.D., Secretary/Treasurer and Chief Executive Officer

Kara Libby, Ed.D.
Chief Academic Officer

Judith J. White, Ed.D.
Director, Curriculum and Instruction

Ms. Stephanie McLeod
Instructional Supervisor, High School Mathematics
Note to Student: You’ve learned so much in Math 8, Foundations for Algebra, or Accelerated 2! It is important that you keep practicing your mathematical knowledge over the summer to be ready for Algebra I. In this packet, you will find weekly activities for the summer break.

Directions:

➢ Create a personal and fun math journal by stapling several pieces of paper together or use a notebook or binder with paper. Be creative and decorate the cover to show math in your world.

➢ Each journal entry should:
 ❖ Have the week number and the problem number.
 ❖ Have a clear and complete answer that explains your thinking.
 ❖ Be neat and organized.

Playing board and card games are a good way to reinforce basic computation skills and mathematical reasoning. Try to play board and card games at least once a week. Some suggested games to play are: Monopoly, Chess, War, Battleship, Mancala, Dominoes, Phase 10, Yahtzee, 24 Challenge, Sudoku, Connect Four, and Risk.
Where to Go to Get Help and Opportunities for Practice!

During the course of your math work this summer, you may need some assistance with deepening your understanding the skills and concepts. You also might want to get some more practice. Here are some sites you can visit online:

To get the exact definition of each standard, go to www.corestandards.org and search for the content standard (for example, HSF.BF.1.3).

Khan Academy has helpful videos and self-guided practice problems for every grade level. Go to www.khanacademy.org to get started.
Domain: Functions

Directions:

Encryptions are used by spies, secret societies, and other organizations to transfer information without other people reading their messages. Secret codes can be created by a simple scheme of replacing letters with numbers. More complex codes replace letters with other letters. The code scheme is called a cipher and can be written as a list or table.

1. A letter-to-letter code can be represented in a graph. Create a key to determine the cipher represented in the graph below.
2. Use the code cipher from the to code the message “The homework is on page fifty”.
\[\text{WRL RCGLXCSK OU CE ADPL NONWT} \]

3. Use the cipher to decode the message “SLJ JCP FDSKU DW GOJEOPRW”.
\[\text{RED DOG BARKS AT MIDNIGHT} \]

4. Create your own cipher code so that another letter replaces each letter.
5. Use your cipher to code the following message: “Summer Breaks are relaxing.”

ANSWERS WILL VARY
Week 2

Domain: Functions

Directions:

As rules can be created to code a message in letters, you can write a rule that changes numbers into other numbers. Words, tables and graphs can represent these rules. The rule “add one to each number” can be represented in other forms.

<table>
<thead>
<tr>
<th>Form</th>
<th>Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words – verbal expression</td>
<td>“add one to each number”</td>
</tr>
<tr>
<td>Equation</td>
<td>(y = x + 1)</td>
</tr>
</tbody>
</table>
| Table | \[
| x | 0 | 1 | 2 | 3 |
| y | 1 | 2 | 3 | 4 |
| Graph | ![Graph Image] |
1. Represent the function in the other 3 forms.

<table>
<thead>
<tr>
<th>x</th>
<th>-4</th>
<th>3</th>
<th>5</th>
<th>16</th>
<th>25</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-7</td>
<td>7</td>
<td>11</td>
<td>33</td>
<td>51</td>
<td>63</td>
</tr>
</tbody>
</table>

VERBAL EXPRESSION – 2 times a number plus 1
Equation – \(y = 2x + 1 \)
Graph –

2. Complete the table and graph \(y = x^2 + 2x + 1 \).

a.

<table>
<thead>
<tr>
<th>Input</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>
b.

\[y = x^2 \]

\[(-1, 0) \quad (0, 1) \]

3. Use the vocabulary words below to explain how the following real-life experience is like a function.

When you pick up a phone and dial (301) 555-2612 you will get the Prince George’s County Zoo. When you dial (301) 222-3645 you will get the Prince George’s County Museum. When you pick up the phone and dial a specific number, you will get only one business/resident.
Sample Response

You can think of phone numbers for various businesses and residents as a relation. The phone number represents the input and the business/resident associated with the phone represents the output. The set of phone numbers for all businesses/residents represents the domain and the set of business/residents in Prince George's County represents the range. This is a functional relationship since one phone number corresponds to only one business. One phone cannot be associated to more than one business.

<table>
<thead>
<tr>
<th>domain</th>
<th>range</th>
<th>input</th>
<th>output</th>
<th>relation</th>
<th>function</th>
</tr>
</thead>
</table>

Prince George's County Public Schools
Rising Algebra 1 Summer Enrichment Answer Key
Week 3

Domain: *Expressions and Equations*

Standard: 8.EE.5 - 8.EE.6: Understand the connections between proportional relationships, lines, and linear equations.

Standard: 8.EE.7 –8.EE.8: Analyze and solve linear equations and pairs of simultaneous linear equations.

Directions: Jessie likes candles. She also likes mathematics and was thinking about using algebra to answer a question that she had about two of her candles. Her taller candle is 16 centimeters tall. Each hour, which it burns, makes the candle lose 2.5 centimeters in height. Her short candle is 12 centimeters tall and loses 1.5 centimeters in height for each hour that it burns.

Jessie needs your help to determine whether these two candles would ever reach the same height at the same time if allowed to burn the same length of time. She also wants to know what height the two candles would be at that time. If it is not possible, she wants to know why it could not happen and what would need to be true in order for them to be able to reach the same height. To help Jessie understand what you are doing, be sure to use multiple representations, justify your results and explain your thinking.

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>16 cm candle height (cm)</th>
<th>12 cm candle height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>13.5</td>
<td>10.5</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>4.5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>-1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Sample Response
According to the table and graph I created below, if both candles are allowed to burn the same length of time, in 4 hours, both candles will have a height of 6 cm.
Week 4

Domain: Expressions and Equations

Standard: 8.EE.5 - 8.EE.6: Understand the connections between proportional relationships, lines, and linear equations.

Directions: You have been selected by members of Team Cheetah to participate in a one-mile race during spirit week. Another student from Team Gazelle will race against you. You are able to run 12 feet per second. Since the student from Team Gazelle runs 10 feet per second, you have been asked to let him have a 1000-feet head start. If both of you maintain the estimated rates, would you be able to beat your opponent? Use at least 2 different methods to justify your conclusion.

Students may also use an equation.

<table>
<thead>
<tr>
<th>Seconds</th>
<th>Team Cheetah Distance (feet)</th>
<th>Team Gazelle Distance (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
<td>2000</td>
</tr>
<tr>
<td>200</td>
<td>2400</td>
<td>3000</td>
</tr>
<tr>
<td>300</td>
<td>3600</td>
<td>4000</td>
</tr>
<tr>
<td>400</td>
<td>4800</td>
<td>5000</td>
</tr>
<tr>
<td>500</td>
<td>6000</td>
<td>6000</td>
</tr>
</tbody>
</table>

At 500 seconds, both runners will be at 6000 feet. Since 1 mile equals 5280 feet, Team Cheetah will not be able to beat Team Gazelle.
Week 5

Domain: Statistics and Probability

Directions:

Is there an association between whether a middle or high school student plays a sport and whether he or she plays a musical instrument? To investigate, survey 30 people and record your results below. Record the answers in the table below. **Answers will vary based on student’s results.**

<table>
<thead>
<tr>
<th>Student</th>
<th>Sport (Yes or No)</th>
<th>Musical Instrument (Yes or No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>11</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>12</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>13</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>14</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>15</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>16</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>17</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>18</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>19</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>20</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>21</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>22</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>23</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>24</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>25</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Summarize the data below.

<table>
<thead>
<tr>
<th>Sport</th>
<th>Instrument</th>
<th>Yes</th>
<th>No</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>11</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td>4</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>10</td>
<td>25</td>
</tr>
</tbody>
</table>

a. Of the middle and high school students you surveyed who play a sport, what proportion plays a musical instrument?
 \(\frac{11}{16} = 68.75\% \)

b. Of the middle and high school students you surveyed who do not play a sport, what proportion plays a musical instrument?
 \(\frac{4}{9} = 44.4\% \)

c. Based on your data, do you think there is an association between playing a sport and playing an instrument? Justify your reasoning.
 Yes, according to the study, if you play a sport, they are most likely to play an instrument.

d. Create another visual representation that could help you determine the association, if any, between playing a sport and playing a musical instrument.
Week 6

Domain: Expressions and Equations

Standard: 8.EE.5 - 8.EE.6: Understand the connections between proportional relationships, lines, and linear equations.

Standard: 8.EE.7 – 8.EE.8: Analyze and solve linear equations and pairs of simultaneous linear equations.

Directions:

Read the problem below.

The figure below shows the lines l and m described by the equations $4x - y = a$ and $y = 2x + b$ respectively for some constants a and b. The two lines interest at the point (p,q).
1. Interpret a and b in terms of the graphs of the equations.

![Graph of lines l and m with points (p,q) and intercepts a and b]

a & b represent the y-intercepts of the graph. Line l is steeper and therefore $-a$ is the y-coordinate of the point where l intersects the y-axis.

2. Using a pencil, place the tip of your pencil at point (p,q) and trace line l to the point whose x-coordinate is $p + 2$. Using a pen, do the same for line m. Determine the difference between the y-coordinates for lines l and m.

Line l has a slope of 4. So on l, each increase of one unit in the x-value produces an increase of units in the y-value. Thus an increase of 2 units in the x-value produce an increase of 8 units in the y-value. The line m has a slope of 2. So on m each increase of 1 unit in the x-value produces an increase of 2 units in the y-value. Thus an increase of 2 units in the x value produces an increase of 4 units in the y value.

Thus the l y-value would be $8 - 4 = 4$ units larger than the m y value.
Week 7

Domain: *Expressions and Equations*

Standard: *8.EE.5 - 8.EE.6:* Understand the connections between proportional relationships, lines, and linear equations.
Standard: *8.EE.7 – 8.EE.8:* Analyze and solve linear equations and pairs of simultaneous linear equations.

1. Find the linear equations for L_1 and L_2.
 - $L_1 - y = 4x + 5$
 - $L_2 - y = 2x + 13$

2. Find two additional points, one that lies on L_1 and one that lies on L_2.

<table>
<thead>
<tr>
<th>x</th>
<th>L_1 y = 4x + 5</th>
<th>L_2 y = 2x + 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>19</td>
</tr>
</tbody>
</table>
Algebra I – Unit 1 Preview

Domain: Number System

Standard:
A.CED.1 – Create equations that describe numbers or relationships.
A.SSE.1 – Interpret the structure of expressions.

Sean has been assigned the following linear equations and inequality word problems. Help him solve each problem below by using the five-step plan below.

1. Drawing a Sketch (if necessary)
2. Defining a Variable
3. Setting up an equation or inequality
4. Solve the equation or inequality
5. Make sure you answer the question

1. The sum of 38 and twice a number is 124. Find the number.

 \[x - \text{number} \]
 \[38 + 2x = 124 \]
 \[x = 43 \]

 \[38 + 2(43) = 124 \]
 \[38 + 86 = 124 \]
 \[124 = 124 \]

2. The sum of two consecutive integers is less than 83. Find the pair of integers with the greatest sum.
 \[x - \text{a number} \]

 \[x + (x+1) < 83 \]
 \[2x + 1 < 83 \]
 \[2x < 82 \]
 \[x < 41 \]

 \[40 + 41 < 83 \]
81 < 83

3. A rectangle is 12m longer than it is wide. Its perimeter is 68m. Find the length and width of the rectangle.

\[w + 12 \]

\[w + 12 + w + 12 + w + w = 68 \]
\[4w + 24 = 68 \]
\[4w = 44 \]
\[w = 11 \]

width = 11
length = 23

4. Alex has twice as much money as Jennifer. Jennifer has $6 less than Shannon. Together they have $54. How much money does each have?

\[x \] – amount of money for Jennifer
\[y \] – amount of money for Alex
\[z \] – amount of money for Shannon

\[y = 2x \]
\[x = z - 6 \]
\[x + y + z = 54 \]

\[x + 2x + z = 54 \]
\[3x + z = 54 \]
\[3x + x + 6 = 54 \]
\[4x + 6 = 54 \]
\[4x = 48 \]
\[x = 12 \]

\[y = 2x = 24 \]
12 + 24 + z = 54
36 + z = 54
z = 18
Jennifer has $12
Alex has $24
Shannon has $18

5. There are three exams in a marking period. A student received grades of 75 and 81 on the first two exams. What grade must the student earn on the last exam to get an average of no less than 80 for the marking period?

\[
\frac{x + 75 + 81}{3} > 80
\]
\[
x + 75 + 81 > 240
\]
\[
x + 156 > 240
\]
\[
-156 -156
\]
\[
x > 84
\]

The student must receive a score greater than 84 to receive a score of no less than 80 for the marking period.